### Day 17 - Special Products - 09.10.14

Bell Ringer

1. Simplify the following: 4(3d2 + 5d) - d(d2 - 7d + 12)

1. -d3 + 19d2 + 8d

2. d3 + 19d2 + 8d

3. -d3 + 19d2 - 8d

4. d3 + 19d2 - 8d

5. none of the above

2. Simplify the following: (4x + 9)(2x2 - 5x + 3)

1. 8x3 - 2x2 - 33x + 27

2. -8x3 - 2x2 - 33x + 27

3. 8x3 - 2x2 - 33x - 27

4. 8x3 + 2x2 - 33x + 27

5. none of the above

3. Simplify the following: (a + b)2

1. a2 + 2ab + b2

2. a2 + ab + b2

3. a2 + a2b2 + b2

4. a2 - ab + b2

5. none of the above

4. Simplify the following: (a - b)2

1. a2 - 2ab - b2

2. a2 - ab - b2

3. a2 - a2b2 + b2

4. a2 - 2ab + b2

5. none of the above

5. Simplify the following: (a + b)(a - b)

1. a2 - b2

2. a2 + b2

3. a2b2

4. b2 - a2

5. none of the above

Review
• Monomials
• Polynomials
• Multiplying Polynomials by Monomials
• Multiplying Polynomials by Polynomials

Lesson
• Special Products
• page 461 #1
• Checkpoint #1
• page 461 #2
• page 461 #5-9 (odds)
• Checkpoint #2
• page 461 #10
• page 462 #13-37 (odds)
• Checkpoint #3
• page 462 #34
• Checkpoint #4
• page 462 #36
• Checkpoint #5
• page 462 #38
• Extra Practice
• page 469 #1-11, #20-33

Exit Ticket
• Posted on the board at the end of the period.
Lesson Objective(s)
• How are squares of sum and differences calculated?
• How is the product of a sum and difference calculated?

Standard(s)

Mathematical Practice(s)
• #1 - Make sense of problems and persevere in solving them
• #2 - Reason abstractly and quantitatively
• #3 - Construct viable arguments and critique the reasoning of others
• #6 - Attend to precision
• #7 - Look for and make use of structure