Ozarka STEM

Search this site
  • Home
  • Calculus 1
  • CSP
  • Advanced Algebra
  • Help Request
  • Remediation
  • Class Radio
  • Math Team
  • Mathletes
  • Teacher Access
  • Comments

General Info

  • About
  • Contact
  • Bell Schedule
  • Availability

WCC

  • MTH131
  • Chapters

CSP

  • CSP Units
  • CSP Calendar
  • CS in Media
  • Class Conduct

Calculus 1

  • Calculus 1 Units
  • Calculus Videos
  • Calculus Calendar
  • Calculus Form
  • Dual Credit Guide
  • Equations
  • Extra Problems
  • Online Text
  • CalcChat
  • Backchannel

ICS

  • ICS Units

Students

  • Brainstorm Form
  • LOU Form
  • Comment Box
  • Course Catalog
  • Desmos
  • GPA Calculator
  • How To Take Notes
  • Post-Test Reflection Form
  • School Calendar
  • Testing Center
  • BHS Announcements
  • Student Leaders
Calculus 1‎ > ‎S1 Calculus Lessons‎ > ‎

Unit 5 - Logarithmic, Exponential, and Other Functions

  • Day 64 - Differentiation using the Natural Logarithmic Function - 11.18.15
  • Day 65 - Integration using the Natural Logarithmic Function - 11.19.15
  • Day 66 - Differentiation and Integration of Exponential Functions (Base e) - 11.20.15
  • Day 67 - Differentiation and Integration of Exponential Functions - 11.23.15
  • Day 68 - Unit 5 Overview - 11.24.15
  • Day 69 - Unit 5 Overview - 11.30.15
  • Day 70 - Unit 5 Test - 12.01.15

Unit 5 Videos
  1. Differentiation and Integration using the Natural Logarithmic Function
  2. Differentiation of Natural Logs (example)
  3. Integration using the Natural Logarithmic Function (example)
  4. Derivative and Antiderivative of e^x
  5. Differentiation of e^x (example)
  6. Integration of e^x (example)
  7. Derivative and Antiderivative of a^x
  8. Differentiation of a^x (example)
  9. Integration of a^x (example)

Unit 5 Standards
  • APC.9
    • Apply formulas to find derivatives.
    • Includes:
      • derivatives of algebraic, trigonometric, exponential, logarithmic, and inverse trigonometric functions
      • derivations of sums, products, quotients, inverses, and composites (chain rule) of elementary functions
      • derivatives of implicitly defined functions
      • higher order derivatives of algebraic, trigonometric, exponential, and logarithmic, functions

Sign in|Recent Site Activity|Report Abuse|Print Page|Powered By Google Sites