Bell RingerIf f(x) = 2x  5, find f(x + h) 2x + 2h  5 2x  2h  5 2x + 2h + 5 2x + 2h  5 none of the above
Find the slope of the tangent line of f(x) at any point x. 2 2 2x 2x none of the above
If f(x) = 2x2 + 4x  1, find f(x + h) 2x2  4hx  2h2 + 4x + 4h  1 2x2  4hx  2h2 + 4x + 4h  1 2x2 + 4hx  2h2 + 4x + 4h  1 2x2  4hx  2h2 + 4x + 4h + 1 none of the above
Find the slope of the tangent line of f(x) at any point x. 4x 4x 4 4  none of the above
Review Equation of Secant Line
 Equation of Tangent Line
Lesson Drawing the Tangent Line on a Graph
 Derivative
 Slope of a Vertical Tangent Line
 Differentiation and Continuity
 Tangent Line Practice
 page 103 #13 (odds)
 page 103 #59 (odds)
 page 103 #10
 page 103 #2531 (odds)
 page 103 #32
 page 103 #3337 (odds)
 page 103 #38
 page 103 #3941 (odds)
 page 103 #42
 Derivative
 page 103 #1123 (odds)
 page 103 #24
Exit Ticket Answer the problem that will be posted at the end of the block.
 Lesson Objective(s) How can tangent lines be drawn for points on a function?
 How is the derivative related to tangent lines?
 How are differentiation and continuity related?
Standard(s)  #1  Make sense of problems and persevere in solving them
 #2  Reason abstractly and quantitatively
 #3  Construct viable arguments and critique the reasoning of others
